Arduino Garden Controller – Automatic Watering and Data Logging

Gardening in the modern age means making things more complicated and arduous, with electrons, bits, and bytes. Behold: the garduino. My brother got me an arduino microcontroller board for Christmas, which to me was a solution looking for a problem. I finally found the problem: fresh herbs are expensive at the grocery store. But apparently not as expensive as adding a bunch of sensors and electronics to your garden.

 

Build one yourself or just poke around in the code: https://github.com/gradyh/GradyHillhouseGarduino

 

Moisture sensors that measure the resistance or conductivity across the soil matrix between two contacts are essentially junk. First of all, resistance is not a very good indicator of moisture content, because it is highly dependent on a number of factors which might vary from garden to garden including soil ph, dissolved solids in the water, and temperature. Second, most of them are of poor quality with contacts that easily corrode. For the most part you’d be lucky to get one to last through an entire season. Capacitive sensors are generally more accurate because they are just measuring the change in dielectric properties of the soil which is less sensitive to other environmental factors. They also don’t require any exposed conductive surfaces which means they can last a bit longer in the harsh environment of your backyard. My soil moisture sensor (and soil temperature sensor) came from http://www.vegetronix.com.

 

The arduino’s analog inputs read voltage, so to use a resistive sensor (like the photoresistor I used to measure sunlight), you have to set up a voltage divider. This is just a really simple circuit which divides the voltage drop between your sensor and a known resistor. You know the current is the same for both, so you can calculate the resistance of your sensor using ohm’s law. The only problem here is that a photoresistor relationship to illuminance is log-log, that is to say it spans several orders of magnitude. So if you use a big resistor (5k – 10k ohm) in your voltage divider, your sensor will be sensitive to low light levels, but you won’t be able to tell the difference between a sunny day and an overcast one. Since this thing’s going outside, I used a 100 ohm resistor, which should hopefully give me good differentiation between levels of brightness in the daylight.

 

No Comment

Post A Comment

error: Context Menu disabled!