Preloader image
   
44
blog,paged,paged-177,satellite-core-1.0.6,unselectable,satellite-theme-ver-3.1,

MARLO: Dynamic 3D walking based on HZD gait design and BMI constraint selection

BTN LiveBiG was filming MARLO the day we began testing a new method for controller design.   The controller is based on virtual constraints and hybrid zero dynamics (HZD). Here we are testing a new method for designing virtual constraints based on bilinear matrix inequality (BMI) optimization.   MARLO is a 3D robot designed to study principles of dynamic walking. Unlike most other 3D walking robots, MARLO does not have large feet with powered ankles. This forces the robot to balance dynamically, but may lead to more natural and more energetically efficient walking.   MARLO is one of three ATRIAS…

From running roaches to robots

U-M engineers are analyzing the reflexes of cockroaches to aid in developing steadier robots. Professor Shai Revzen is recording the reaction of running cockroaches being shoved sideways, discovering that their body kicks in before their dawdling nervous system can tell it what to do. These new insights on how biological systems stabilize could one day help engineers design steadier robots and improve doctors’ understanding of human gait abnormalities.  

Designing robots that assemble and adapt

What happens when you send a rolling robot out for a mission, and it turns out they need legs instead? That happens more often than you might think, and to combat that Michigan Engineers are working on creating “self-assembling” robots that can build themselves into any form required.   U-M Assistant Professor Shai Revzen and his team at the Biologically Inspired Robotics and Dynamical Systems (BIRDS) Lab are working on a variety of innovative solutions to create mechanical and robotic tools for challenging situations. In addition to self-assembling technologies, the team hopes to identify, model and reproduce the strategies animals…

Jessy Grizzle | Bipedal Walking Robots

Distinguished University Professorship 2015 Lecture Series presented by Elmer G. Gilbert; Distinguished University Professor of Engineering, Jerry W. and Carol L. Levin; Professor of Engineering and the College of Engineering at the University of Michigan   The fields of control and robotics are working hand-in-hand to development bipedal machines that can realize walking motions with the stability and agility of a human being. Dynamic models for bipeds are hybrid nonlinear systems, meaning they contain both continuous and discrete elements, with switching events that are spatially driven by changes in ground contact. This talk will show how nonlinear control methods are…

Smart Carts

A fleet of autonomous “Smart Carts” – high-tech, 3D printed, low-speed electric vehicles – could one day zip around the University of Michigan North Campus, taking students, professors and staff to class, labs and offices while also serving as one of the first test beds for on-demand autonomous transit.   In an early step toward that goal, U-M researchers received a custom, 3D-printed vehicle from technology company Local Motors. Over the next year, Edwin Olson, an associate professor of Electrical Engineering and Computer Science who leads the project and his team of U-M researchers will develop autonomy capabilities and build…

How to Build a BigANT Leg

Shai Revzen’s lab builds robots inspired by nature that are easy to construct and get walking. Check out how to build your own BigANT!   Rapidly Prototyping Robots with Plate and Reinforced Flexure (PARF) Mechanisms, for IEEE Robotics and Automation Magazine  

Rosie learns Tower of Hanoi

Rosie, an interactive task learning robot built on the Soar cognitive architecture, learns the rules of a foam block Tower of Hanoi through situated interactive instruction and then solves the puzzle.  

Smartcart project gets underway at Mcity

A fleet of autonomous “Smart Carts” – high-tech, 3D printed, low-speed electric vehicles – could one day zip around the University of Michigan North Campus, taking students, professors and staff to class, labs and offices while also serving as one of the first test beds for on-demand autonomous transit.   In an early step toward that goal, U-M researchers received a custom, 3D-printed vehicle from technology company Local Motors. Over the next year, Edwin Olson, an associate professor of Electrical Engineering and Computer Science who leads the project and his team of U-M researchers will develop autonomy capabilities and build…

Sirius: Modeling Future Data Center Workloads

Sirius, an open-source digital assistant created at Michigan, can serve as a powerful tool for researchers to use in modeling the data center workloads of the future, which will be based heavily on image and voice processing and Q&A services, as opposed to text searches. It can also help researchers to improve the digital assistant.  

Prof. Satinder Singh Baveja on robotic companions

Will advances in artificial intelligence bring us closer to having robots in our homes? A Michigan Engineering expert weighs in on the goals and outlook for research in making robots that think like humans.   The idea of artificial intelligence is rooted in creating a mind that has the same flexibilities and capabilities of a human mind — or even more. Although research has been advanced in a variety of areas of human intelligence, such as voice and face recognition, the next question will be how to integrate the separate aspects into a fully capable brain, says U-M professor Satinder…

Prof. Edwin Olson on sensing and perception for robots

Prof. Olson’s research includes finding ways for robots to sense and understand their environment while coping with uncertainty and ambiguity. The perception problem is central to a variety of practical applications, from indoor robots that can lead tours or deliver mail to autonomous cars that can navigate urban environments. His work includes both fundamental algorithm research (optimization, state estimation, classification) and system building.  

Vulcan: The Intelligent Robotic Wheelchair

Prof. Ben Kuipers, CSE graduate student Collin Johnson, and ME graduate student Jong Jin Park have created Vulcan, an intelligent robotic wheelchair. Vulcan learns the spatial structure of the environment it moves through and it uses that knowledge to plan and follow routes from place to place. Robotic wheelchairs will benefit people who need a wheelchair, but are unable to use one because of multiple disabilities.  

Software that is better at detecting deception than you are

By studying videos from high-stakes court cases, University of Michigan researchers are building unique lie-detecting software based on real-world data.   Their prototype considers both the speaker’s words and gestures, and unlike a polygraph, it doesn’t need to touch the subject in order to work. In experiments, it was up to 75 percent accurate in identifying who was being deceptive (as defined by trial outcomes), compared with humans’ scores of just above 50 percent. The system might one day be a helpful tool for security agents, juries and even mental health professionals.  

error: Context Menu disabled!