Preloader image
   

Synthesizing Object Receiving Motions of Humanoid Robots with Human Motion Database

This project presents a method for synthesizing motions of a humanoid robot that receives an object from a human, with focus on a natural object passing scenario where the human initiates the passing motion by moving an object toward the robot, which continuously adapts its motion to the observed human motion in realtime. In this scenario, the robot not only has to recognize and adapt to the human action but also has to synthesize its motion quickly so that the human does not have to wait holding an object. We solve these issues by using a human motion database obtained…

PIXELBOTS – Interaction with mobile pixels

Interaction with a swarm of mobile robot pixels. Gesture-based, real-time drawing and with a hand-held tablet.   Collaborative project of Disney Research Zurich and the Autonomous Systems Lab, ETH Zurich.   See “Human – Robot Swarm Interaction for Entertainment: From animation display to gesture based control” – Javier Alonso-Mora, Roland Siegwart and Paul Beardsley, Proc. of the 9th ACM / IEEE International Conference on Human-Robot Interaction (HRI), 2014.   MEDIA NOTES: Disney Research and ETH have created a new kind of display – the pixels are small colorful mobile robots which create cartoon-like images or animations. These are the ‘Pixelbots’….

Printing Teddy Bears: A Technique for 3D Printing of Soft Interactive Objects

This paper considers the design, construction, and example use of a new type of 3D printer which fabricates three-dimensional objects from soft fibers (wool and wool blend yarn). This printer allows the substantial advantages of additive manufacturing techniques (including rapid turn-around prototyping of physical objects and support for high levels of customization and configuration) to be employed with a new class of material.  

Interactive Air-Powered Robot Arm

We have developed a new method for puppeteers to remotely control mechanical characters without the use of motors. The pair of robot arms shown in this video are connected only by flexible pneumatic tubing. There are no pumps, valves, sensors, motors, or electronic controllers used. The passive connection between the two arms is made entirely by air pressure, allowing a large separation between the character and the puppeteer, and tight bends in the air control lines. The key technology is an ultra-low friction pneumatic transmission, enabled by the use of rolling diaphragm seals, instead of traditional sliding o-ring seals. If…

Beachbot

Conceived by Disney Research and working in partnership with a student team at ETH Zürich, the Beachbot is a mobile robot that can turn an ordinary beach into an artist’s canvas. Thanks to innovative balloon wheels, the robot is able to traverse sandy beaches without leaving any noticeable tracks. Drawing is achieved using a controllable rake at the rear of the robot, with individually controllable pins that can be raised and lowered to create thick or thin lines in the sand. The drawing area on the beach is defined simply using four vertical poles that define the corners of the…

A Layered Fabric 3D Printer for Soft Interactive Objects

We present a new type of 3D printer that can form precise, but soft and deformable 3D objects from layers of off-the-shelf fabric. Our printer employs an approach where a sheet of fabric forms each player of a 3D object. The printer cuts this sheet along the 2D contour of the layer using a laser cutter and then bonds it to previously printed layers using a heat sensitive adhesive. Surrounding fabric in each layer is temporarily retained to provide a removable support structure for layers printed above it. This process is repeated to build up a 3D object layer by…

Interactive Design of 3D Printable Robotic Creatures

We present an interactive design system that allows casual users to quickly create 3D-printable robotic creatures. Our approach automates the tedious parts of the design process while providing sample room for customization of morphology, proportions, gait and motion style. The technical core of our framework is an efficient optimization-based solution that generates stable motions for legged robots of arbitrary designs. An intuitive set of editing tools allows the user to interactively explore the space of feasible designs and to study the relationship between morphological features and the resulting motions. Fabrication blueprints are generated automatically such that the robot designs can…

VertiGo – A Wall-Climbing Robot Including Ground-Wall Transition

VertiGo is a wall-climbing robot that is capable of transitioning from the ground to the wall, created in collaboration between Disney Research Zurich and ETH. The robot has two tiltable propellers that provide thrust onto the wall, and four wheels. One pair of wheels is steerable, and each propeller has two degrees of freedom for adjusting the direction of thrust. By transitioning from the ground to a wall and back again, VertiGo extends the ability of robots to travel through urban and indoor environments.   The robot is able to move on a wall quickly and with agility. The use…

RapID: A Framework for Fabricating Low-Latency Interactive Objects with RFID Tags

RFID tags can be used to add inexpensive, wireless, batteryless sensing to objects. However, quickly and accurately estimating the state of an RFID tag is difficult. In this work, we show how to achieve low-latency manipulation and movement sensing with off-the-shelf RFID tags and readers. Our approach couples a probabilistic filtering layer with a monte-carlo-sampling-based interaction layer, preserving uncertainty in tag reads until they can be resolved in the context of interactions. This allows designers’ code to reason about inputs at a high level. We demonstrate the effectiveness of our approach with a number of interactive objects, along with a…

PaperID: A Technique for Drawing Functional Battery-Free Wireless Interfaces on Paper

We describe techniques that allow inexpensive, ultra-thin, battery-free Radio Frequency Identification (RFID) tags to be turned into simple paper input devices. We use sensing and signal processing techniques that determine how a tag is being manipulated by the user via an RFID reader and show how tags may be enhanced with a simple set of conductive traces that can be printed on paper, stencil-traced, or even hand-drawn. These traces modify the behavior of contiguous tags to serve as input devices. Our techniques provide the capability to use off-the-shelf RFID tags to sense touch, cover, overlap of tags by conductive or…

A Hybrid Hydrostatic Transmission and Human Safe Haptic Telepresence Robot

We present a new type of hydrostatic transmission that uses a hybrid air-water configuration, analogous to N+1 cable-tendon transmissions, using N hydraulic lines and 1 pneumatic line for a system with N degrees of freedom (DOFs). The common air-filled line preloads all DOFs in the system, allowing bidirectional operation of every joint. This configuration achieves the high stiffness of a water-filled transmission with half the number of bulky hydraulic lines. We implemented this transmission using pairs of rolling-diaphragm cylinders to form rotary hydraulic actuators, with a new design achieving a 600-percent increase in specific work density per cycle. These actuators…

Untethered One-Legged Hopping in 3D Using Linear Elastic Actuator in Parallel (LEAP)

Current and previous single-legged hopping robots are energetically tethered and lack portability. Here, we present the design and control of an untethered, energetically autonomous single-legged hopping robot. The thrust-producing mechanism of the robot’s leg is an actuated prismatic joint, called a linear elastic actuator in parallel (LEAP). The LEAP mechanism comprises a voice coil actuator in parallel with two compression springs, which gives our robot passive compliance. An actuated gimbal hip joint is realized by two standard servomotors. To control the robot, we adapt Raibert’s hopping controller, and find we can maintain balance roughly in-place for up to approx. 7…

Designing Cable Driven Actuation Networks for Kinematic Chains and Trees

In this paper we present an optimization-based approach for the design of cable-driven kinematic chains and trees. Our system takes as input a hierarchical assembly consisting of rigid links jointed together with hinges. The user also specifies a set of target poses or keyframes using inverse kinematics. Our approach places torsional springs at the joints and computes a cable network that allows us to reproduce the specified target poses. We start with a large set of cables that have randomly chosen routing points and we gradually remove the redundancy. Then we refine the routing points taking into account the path…

Snapbot: A Reconfigurable Legged Robot

We develop a reconfigurable legged robot, named Snapbot, to emulate configuration changes and various styles of legged locomotion. The body of Snapbot houses a microcontroller and a battery for untethered operation. The body also contains connections for communication and power to the modular legs. The legs can be attached to and detached from the body using magnetic mechanical couplings. In the center of this coupling, there is a multi-pin spring-loaded electrical connector that distributes power and transmits data between the controller and leg actuators. The locomotion algorithm is implemented on the microcontroller. The algorithm enables Snapbot to locomote in various…

MetaSilicone: Design and Fabrication of Composite Silicone with Desired Mechanical Properties

We present a method for designing and fabricating MetaSilicones—composite silicone rubbers that exhibit desired macroscopic mechanical properties. The underlying principle of our approach is to inject spherical inclusions of a liquid dopant material into a silicone matrix material. By varying the number, size, and locations of these inclusions as well as their material, a broad range of mechanical properties can be achieved. The technical core of our approach is formed by an optimization algorithm that, combining a simulation model based on extended finite elements (XFEM) and sensitivity analysis, computes inclusion distributions that lead to desired stiffness properties on the macroscopic…

Interacting Intelligent Characters AR

In this paper, we explore interacting with virtual characters in AR along real-world environments. Our vision is that virtual characters will be able to understand the real-world environment and interact in an intelligent and realistic manner with it. For example, a character can walk around un-even stairs and slopes, or be pushed away by collisions with real-world objects like a ball. We describe how to automatically animate a new character, and imbue it’s motion with adaption to environments and reactions to perturbations from the real world.  

Enabling Interactive Infrastructure with Body Channel Communication

Body channel communication (BCC) uses the human body to carry signals, and therefore provides communication and localization that are directly tied to human presence and actions. Previous BCC systems were expensive, could operate only in a laboratory, or only focused on special use cases. We present here an end-to-end BCC system that is designed for ambient intelligence. We introduce the BCC infrastructure that consists of portable devices (e.g., a simple sphere), mobile devices (e.g.,a smartwatch-like wristband), and stationary devices (e.g., floor/wall tiles). We also describe the core technology that is used in each of these units. The TouchCom hardware-software platform…

Wall++: Room-Scale Interactive and Context-Aware Sensing

Human environments are typified by walls – homes, offices, schools, museums, hospitals and pretty much every indoor context one can imagine has walls. In many cases, they make up a majority of readily accessible indoor surface area, and yet they are static – their primary function is to be a wall, separating spaces and hiding infrastructure. We present Wall++, a low-cost sensing approach that allows walls to become a smart infrastructure. Instead of merely separating spaces, walls can now enhance rooms with sensing and interactivity. Our wall treatment and sensing hardware can track users’ touch and gestures, as well as…

Force Jacket: Pneumatically-Actuated Jacket for Embodied

Immersive experiences seek to engage the full sensory system in ways that words, pictures, or touch alone cannot. With respect to the haptic system, however, physical feedback has been provided primarily with handheld tactile experiences or vibration-based designs, largely ignoring both pressure receptors and the full upper-body area as conduits for expressing meaning that is consistent with sight and sound. We extend the potential for immersion along these dimensions with the Force Jacket, a novel array of pneumatically-actuated airbags and force sensors that provide precisely directed force and high frequency vibrations to the upper body. We describe the pneumatic hardware…

Design and Fabrication of a Soft Robotic Hand and Arm System

We present the hardware design and fabrication of a soft arm and hand for physical human-robot interaction. The six DOF arm has two air-filled force sensing modules which passively absorb impact and provide contact force feedback. The arm has an inflated outer cover which encloses the arm’s underlying mechanisms and force sensing modules. An internal projector projects a display on the inside of the cover which is visible from the outside. On the end of the arm is a 3D printed hand with air-filled, force sensing fingertips. We validate the efficacy of the outer cover design by bending the arm…

error: Context Menu disabled!