Robotics

   

Facing the Unknown, with Robots | Shai Revzen | TEDxUofM

Is there anyway we can prepare to face the unknown? Can we develop robots that are fluid in function?   Shai Revzen is an Assistant Professor of Electrical Engineering, Ecologyand Evolutionary Biology, and Robotics at the University of Michigan. He’s been a video game programmer, an experimental biologist, and Chief Architect in a Silicon Valley tech company. He has co-founded a biomedical start-up, authored several patents, and published academically in robotics, biology, and applied mathematics.  

Prof. Edwin Olson

Prof. Olson’s research includes finding ways for robots to sense and understand their environment while coping with uncertainty and ambiguity. The perception problem is central to a variety of practical applications, from indoor robots that can lead tours or deliver mail to autonomous cars that can navigate urban environments. His work includes both fundamental algorithm research (optimization, state estimation, classification) and system building.  

Prof. Jessy Grizzle

Prof. Grizzle talks about his latest project, the robot MABEL, and hints at MABEL’s successor, ATRIAS. MABEL is the fastest running bipedal robot, thanks to unbeatable algorithms developed by his group. Prof. Grizzle specializes in feedback control.  

How close are we to having robot companions?

Will advances in artificial intelligence bring us closer to having robots in our homes? A Michigan Engineering expert weighs in on the goals and outlook for research in making robots that think like humans.   The idea of artificial intelligence is rooted in creating a mind that has the same flexibilities and capabilities of a human mind — or even more. Although research has been advanced in a variety of areas of human intelligence, such as voice and face recognition, the next question will be how to integrate the separate aspects into a fully capable brain, says U-M professor Satinder…

Meet the MAEBots

Prof. Edwin Olson’s APRIL Lab introduces the MAEBots: a small, smart, and low-cost platform for multi autonomous robotics research that has been open sourced for researchers everywhere.  

Bipedal Robot MABEL Walks Over Randomly Varying Ground

Bipedal Robot MABEL Walks over Randomly Varying Ground: Experiment No. 1 Challenge: Traverse an irregular surface without prior knowledge of ground profile. Comments: We used a single feedback control, with a virtual compliant term in the stance knee. Switching control is not employed here. This was our initial attempt over random ground. The robot fell at the end of the experiment. We understand why it fell and will be back with more results soon.  

Preliminary Outdoor Walking with Underactuated Bipedal Robot MARLO

Testing done on Saturday November 23, 2013 at 8 AM in front of the EECS Building on the University of Michigan North Campus. The temperature was -2 C (about 29 F). MARLO is an underactuated 3D bipedal robot with passive prosthetic feet. Its feedback control is designed using virtual constraints. In previous experiments, MARLO was attached to a boom. but with improved control, the robot can now walk without any external support. A mobile gantry supports a safety cable to catch the robot when it falls, avoiding expensive and time-consuming repairs. The robot is one of 3 ATRIAS-series robots designed…

MARLO: Dynamic 3D walking based on HZD gait design and BMI constraint selection

BTN LiveBiG was filming MARLO the day we began testing a new method for controller design.   The controller is based on virtual constraints and hybrid zero dynamics (HZD). Here we are testing a new method for designing virtual constraints based on bilinear matrix inequality (BMI) optimization.   MARLO is a 3D robot designed to study principles of dynamic walking. Unlike most other 3D walking robots, MARLO does not have large feet with powered ankles. This forces the robot to balance dynamically, but may lead to more natural and more energetically efficient walking.   MARLO is one of three ATRIAS…

From running roaches to robots

U-M engineers are analyzing the reflexes of cockroaches to aid in developing steadier robots. Professor Shai Revzen is recording the reaction of running cockroaches being shoved sideways, discovering that their body kicks in before their dawdling nervous system can tell it what to do. These new insights on how biological systems stabilize could one day help engineers design steadier robots and improve doctors’ understanding of human gait abnormalities.  

Designing robots that assemble and adapt

What happens when you send a rolling robot out for a mission, and it turns out they need legs instead? That happens more often than you might think, and to combat that Michigan Engineers are working on creating “self-assembling” robots that can build themselves into any form required.   U-M Assistant Professor Shai Revzen and his team at the Biologically Inspired Robotics and Dynamical Systems (BIRDS) Lab are working on a variety of innovative solutions to create mechanical and robotic tools for challenging situations. In addition to self-assembling technologies, the team hopes to identify, model and reproduce the strategies animals…

Jessy Grizzle | Bipedal Walking Robots

Distinguished University Professorship 2015 Lecture Series presented by Elmer G. Gilbert; Distinguished University Professor of Engineering, Jerry W. and Carol L. Levin; Professor of Engineering and the College of Engineering at the University of Michigan   The fields of control and robotics are working hand-in-hand to development bipedal machines that can realize walking motions with the stability and agility of a human being. Dynamic models for bipeds are hybrid nonlinear systems, meaning they contain both continuous and discrete elements, with switching events that are spatially driven by changes in ground contact. This talk will show how nonlinear control methods are…

Smart Carts

A fleet of autonomous “Smart Carts” – high-tech, 3D printed, low-speed electric vehicles – could one day zip around the University of Michigan North Campus, taking students, professors and staff to class, labs and offices while also serving as one of the first test beds for on-demand autonomous transit.   In an early step toward that goal, U-M researchers received a custom, 3D-printed vehicle from technology company Local Motors. Over the next year, Edwin Olson, an associate professor of Electrical Engineering and Computer Science who leads the project and his team of U-M researchers will develop autonomy capabilities and build…

How to Build a BigANT Leg

Shai Revzen’s lab builds robots inspired by nature that are easy to construct and get walking. Check out how to build your own BigANT!   Rapidly Prototyping Robots with Plate and Reinforced Flexure (PARF) Mechanisms, for IEEE Robotics and Automation Magazine  

Rosie learns Tower of Hanoi

Rosie, an interactive task learning robot built on the Soar cognitive architecture, learns the rules of a foam block Tower of Hanoi through situated interactive instruction and then solves the puzzle.  

AI, Robotics, IoT part of new AICTE 2018 Undergraduate Syllabus now

  AI, Robotics, IoT part of new AICTE 2018 Undergraduate Syllabus now The much-hyped new age technologies like Artificial Intelligence and Analytics are neither new nor will they take away jobs. The Indian industry is over-glorifying machines, said Prof S Sadagopan, Director (President) of IIIT-Bangalore. Speaking about the future of jobs and the expansion of automation, Sadagopan said that automation is not the end. Every automation creates ten more jobs, Sadagopan added. “While everyone is talking about big data and analytics, the real big data is yet to come. We are at an early stage of analytics,” he said. Speaking…

Pratik Pravin Deshmukh, CoFounder Robolab Technologies Pvt. Ltd presented his ideas to bridge the Gap between Industry and Academia.

National Employability Conclave 2016-17 was held 24 August 2017 in Pune. Highlights of the event was the HR leaders of some of the largest IT and engineering companies which are sharing their idea on shaping the young talent to meet their expectations an employer’s perspective. We are pleased and honoured to be invited to the event and will be happy to be part of the it. Thanks Aspiring Minds for the wonderful National Employability Conclave. The kind of response that we receive is the best achievable or imaginable of its kind 🙂 🙂 Stay tuned! #RobotsAreComing Amol Gulhane, Hemchandra Inamdar…

error: Context Menu disabled!