Robolab Technologies Pvt Ltd | Self_Learning Material
ROBOLAB 'A perfect platform to explore, learn and build robots' -Advanced state of the art technical research facility within campus -Hands on practical experience along with required theory -Consolidation of concepts -Industry- institute Interaction -Standard guidelines and essentials -Superior quality and Advanced robot study platforms -Training by Industry Experts And last but not the least -Affordable excellence with Quick Return on Investment Robolab is your very own, on campus, centre of Excellence in Robotics and Industrial Automation, tailor made for you. Equipped with all the advanced technologies used in industries, the Robolab offers training courses consistent with the latest curricula and the industry requirements. Thus, functioning as the perfect platform for its users (students as well as teachers) to explore, learn, build and share their ideas. We believe in providing innovative and interactive training by industry experts and deliver the same while establishing the Robolab. This empowers the trainees to manage the Robolab in future. Our planned ROI model ensures the educational as well as financial returns. Having Robolab has its own perks! We have some standard Robolab offerings and we also customize as per the needs of the institute. Robolab Technologies Pvt. Ltd is a venture by graduates from the prestigious College of Engineering, Pune (COEP) in association with the BHAU Institute of Innovation, Entrepreneurship and Leadership (BIEL), the Incubation centre of the College of Engineering Pune[COEP].
Atal Tinkering Lab, ATL, Robotics labs for schools in india,Robotics labs for Diploma Colleges in india,Robotics labs for engineering Colleges in india,Robotics labs for colleges in india,a College Of Engineering, Bhau Institute, ,automation and robotics,robotics and automation,automation robotics,robotics automation,robotics & automation,automation robots,automation robotics,automation in robotics,robots and automation,automation and robots,robots in automation,robotics in automation,home robots,home robotics, robots for the home,robots for home,in home robots,learning robotics,lab robotics,learning robots,lab robots,working of robots,college robotics,robotics info,work robots,working of robotics,working in robotics,robots that work,robots learning,training robots,robotics subject,robotics working,lab automation,automation lab, robotics, robolab technologies, college from home,mobile education india,robotics workshops training,members of faculty,india private limited,education-india.in,labs in college,the lab training,email id of students,robotics labs india,,robotics lab manual,robotics lab for schools,robotics lab equipment,robotics lab mit,robotics lab setup proposal,robotics lab iit,robotics lab iisc,robotics lab research academy The team Provides services for Robotics Automation laboratories and establishment, trainer kits, laboratory trainer kits, education trainer kits, training equipments, microprocessor embedded trainers, conduct workshops on trending technologies, Industrial Projects,Robotics and Automation Laboratories Establishment, Conduct Workshop on Trending technologies, Industrial Automation, Technical Guidance, Robotics Labs Basic, Robotics Labs Advanced,Robotics Labs Industrial, iot lab, embedded lab, BIOMEDICAL LAB, CONSUMABLE LAB,CONTROL LAB,DIGITAL COMMUNICATION LAB, DIGITAL LAB, EMBEDDED LAB, FIBER OPTIC LAB, PLC LAB, MICROPROCESSOR LAB, ROBOTICS LAB, RENEWABLE ENERGY LAB, WIRELESS LAB, VLSI LAB, SENSOR AND MECHATRONICS LAB, COMMUNICATION AND NETWORKING LAB,NITI Ayog.
404
archive,category,category-self_learning_material,category-404,ajax_fade,page_not_loaded,smooth_scroll,

Self_Learning Material

   

SMD resistor code calculator

This simple calculator will help you determine the value of any SMD resistor. To get started, input the 3 or 4 digit code and hit the “Calculate” button or Enter. Note: The program was tested rigorously, but it still may have a few bugs. So, when in doubt (and when it’s possible) don’t hesitate to use a multimeter to double-check the critical components. See also the color code calculator on this page for MELF and standard through-hole resistors.   How to calculate the value of an SMD resistor Most chip resistors are marked with a 3-digit or 4-digit code —…

Four-digit SMD resistor examples

The following tables list all commonly used four-digit SMD resistors from 0.1 ohm to 9.76Mohms (E24 and E96 series).   Table 1: 4-digit SMD resistors (E24 series) Code Value Code Value Code Value Code Value 0R10 0.1Ω 1R00 1Ω 10R0 10Ω 1000 100Ω 0R11 0.11Ω 1R10 1.1Ω 11R0 11Ω 1100 110Ω 0R12 0.12Ω 1R20 1.2Ω 12R0 12Ω 1200 120Ω 0R13 0.13Ω 1R30 1.3Ω 13R0 13Ω 1300 130Ω 0R15 0.15Ω 1R50 1.5Ω 15R0 15Ω 1500 150Ω 0R16 0.16Ω 1R60 1.6Ω 16R0 16Ω 1600 160Ω 0R18 0.18Ω 1R80 1.8Ω 18R0 18Ω 1800 180Ω 0R20 0.2Ω 2R00 2Ω 20R0 20Ω 2000 200Ω 0R22…

Lecture Series on Mechanical Engineering

One of the six founding courses of study at MIT, Mechanical Engineering embodies the motto “mens et manus” — mind and hand. Disciplinary depth and breadth, together with hands-on discovery and physical realization, characterize our nationally and internationally recognized leadership in research, education, and innovation. MIT mechanical engineers have always stood at the forefront in tackling the engineering challenges of the day: inventing new technologies, spawning new fields of study, and educating generations of leaders in industry, government, and academia.   Research and Innovation Today, mechanical engineering is one of the broadest and most versatile of the engineering professions. This…

Lecture Series on Mathematics

An undergraduate degree in mathematics provides an excellent basis for graduate work in mathematics or computer science, or for employment in such mathematics-related fields as systems analysis, operations research, or actuarial science.   Because the career objectives of undergraduate mathematics majors are so diverse, each undergraduate’s program is individually arranged through collaboration between the student and his or her faculty advisor. In general, students are encouraged to explore the various branches of mathematics, both pure and applied.   Undergraduates seriously interested in mathematics are encouraged to elect an upper-level mathematics seminar. This is normally done during the junior year or…

Lecture Series on Engineering Innovation and Design

Course Description Learn to produce great designs, be a more effective engineer, and communicate with high emotional and intellectual impact. This project based course gives students the ability to understand, contextualize, and analyze engineering designs and systems. By learning and applying design thinking, students will more effectively solve problems in any domain. Lectures focus on teaching a tested, iterative design process as well as techniques to sharpen creative analysis. Guest lectures from all disciplines illustrate different approaches to design thinking. This course develops students’ skills to conceive, organize, lead, implement, and evaluate successful projects in any engineering discipline. Additionally, students…

Lecture Series on Artificial Intelligence

Course Description This course introduces students to the basic knowledge representation, problem solving, and learning methods of artificial intelligence. Upon completion of 6.034, students should be able to develop intelligent systems by assembling solutions to concrete computational problems; understand the role of knowledge representation, problem solving, and learning in intelligent-system engineering; and appreciate the role of problem solving, vision, and language in understanding human intelligence from a computational perspective.   Course Features Video lectures Subtitles/transcript Assignments (no solutions) Exams (no solutions) Recitation videos Instructor insights This Course at MIT

Lecture Series on Introduction to Robotics

Course Description The purpose of this course is to introduce you to basics of modeling, design, planning, and control of robot systems. In essence, the material treated in this course is a brief survey of relevant results from geometry, kinematics, statics, dynamics, and control. The course is presented in a standard format of lectures, readings and problem sets. There will be an in-class midterm and final examination. These examinations will be open book. Lectures will be based mainly, but not exclusively, on material in the Lecture Notes book. Lectures will follow roughly the same sequence as the material presented in…

Lecture Series on Underactuated Robotics

Course Description Robots today move far too conservatively, using control systems that attempt to maintain full control authority at all times. Humans and animals move much more aggressively by routinely executing motions which involve a loss of instantaneous control authority. Controlling nonlinear systems without complete control authority requires methods that can reason about and exploit the natural dynamics of our machines.   This course discusses nonlinear dynamics and control of underactuated mechanical systems, with an emphasis on machine learning methods. Topics include nonlinear dynamics of passive robots (walkers, swimmers, flyers), motion planning, partial feedback linearization, energy-shaping control, analytical optimal control,…